362 research outputs found

    Tri-Rotor Propeller Design Concept, Optimization and Analysis of the Lift Efficiency During Hovering

    Get PDF
    This study introduces the simulation of a tri-rotor contra-rotating propeller for thrust force and hover lift efficiency during vertical take-off. Vertical take-off or landing is a method used by many aircraft and makes the vehicle more convenient and easier to use. The second rotor revolved in the opposite direction of the first and third rotors. The proposed multi-rotor system has NACA 0012 untwisted and symmetric airfoil and includes three rotors with two blades for each. The airflow analysis was optimized with computational fluid dynamics simulation by using different pitch combinations to achieve the highest hover lift efficiency with sufficient overall thrust value. The critical angle of attack for the chosen airfoil gave the boundary conditions for the pitch of rotors. The results showed us that the most efficient combinations for three rotors work better with an increase of pitch angle from top to bottom so that there is a difference of at least two degrees between propellers. Experiments with angles of attack within the boundary conditions showed that the blade combinations starting from three degrees and increasing values gave positive and adequate results in many cases. In addition, the results showed that a regular increase in the angle of attack does not relate to a regular increment in thrust force

    Method for evaluating the durability of aircraft piston engines

    Get PDF
    A significant issue in aircraft engines is quantifying residual life to overhaul. The algorithm described in this paper calculates with a good level of reliability the residual life of a petrol piston engine. The method was tested on small, latest-generation, naturally-aspirated aircraft and racing piston engines, and has been effective in several experiments. This method is implemented directly on the electronic control system of the engine with very few lines of C-code. The method can also be used in many industrial engines. This innovative method assumes that only two main factors (power level and wear) affect engine durability or time between overhauls. These two factors are considered as separate and combined with worst case criteria. The wear is assumed to follow a logarithmic law and a formula similar to the Miner’s law for material fatigue is used, making it possible to calculate the power-level curve with knowledge of only two points. The wear-curve is also related to elapsed engine cycles. The algorithm is very simple and can be implemented with just a few lines of software code accessing data collected from existing sensors. The system is currently used to evaluate actual residual life of racing engines

    Next generation main battle tank. Part II: Converting old MBTS into unmanned MBTS (UMBT)

    Get PDF
    Modern MBTs (Main Battle Tank) are extremely expensive. Many outdated MBTs and other armored vehicles, often lacking the required armor protection, are still kept in depots. It is now convenient to upgrade them to optionally unmanned weapons by adding a humanoid driver, and a robotic arm as a loader. Sensors, an optional automatic driving system, a control and communication suite would complete the transformation. The main armament and secondary armament may be also changed or upgraded. The off-the-shelf huge electronic equipment can be installed wireless inside the hull. The old crew compartment may be spoiled of all the human related parts. Only the driver seat may be kept in order to leave the capability to remove the humanoid, robotized driver and reinstate the human one. This upgrade should also include a diagnostic system for the vehicle, the sensors and the additional systems to reduce the maintenance burden. An additional, specialized, lightweight armor suite should be focused to protect the mobilization system, the robots, the control and the communication system. This second part of the paper introduces a few options to convert the Leopard 1 MBT to an optionally piloted UMBT (Unmanned Main Battle Tank). A first, minimal step, is just the automation of the original tank. In a second step, the weight is reduced by installing a smaller 60mm cannon with a lighter, but more numerous ammunition storage. A third step increases the firepower by installing on the main turret an automated turret with a 12.7 or 30mm cannon with an optional additional 7.62 machinegun. It is also highly advisable to add an APU (Auxiliary Power Unit) and a battery to reduce IR (infrared) signature, improve main engine life and reduce maintenance

    Revised KAD Tool To Optimize F1 Cars Through A Combined-Elitarian Genetic-Fuzzy Algorithm

    Get PDF
    The KAD(Knowledge Aided Design) tool is developed to predict the performance of an F1 car in different driving conditions and with different configurations. The regulations to put in trimming a car, also in the exasperated technology of the competitions, still demand a remarkable dose of luck and an elevated number of tests. It is then important to know a set of regulations close to the optimal trim before testing the car on the track. The difficult phase of this process is to evaluate the lap time. As a matter of fact driving style, track conditions and car behavior should be simulated. The optimisation of the fuzzy controller that simulates the pilot for an F1 racing car is difficult due to handling problems and velocity of response. For this purpose a specific Genetic Algorithm (GA) was conceived and tuned to work with a lumped mass model of an F1 racing car for the optimization of the fuzzy controller that simulates the pilot. A new mutation and a new crossover operator were defined to complement the standard crossover and mutation operators of the basic Holland\u2019s GA. This was necessary in order to increase the overall performance of the fuzzy pilot. This approach was tested on an F1 car due to the huge amount of data available (Donnarumma, 1998; Moelenbein, 1989; Lee and Takagi, 1993)

    Basic Considerations and Conceptual Design of a VSTOL Vehicle for Urban Transportation

    Get PDF
    On-demand air transport is an air-taxi service concept that should ideally use small, autonomous, Vertical Short Takeoff and Landing (VSTOL), “green”, battery-powered electric aircraft (eVSTOL). In addition, these aircraft should be competitive with modern helicopters, which are exceptionally reliable machines capable of the same task. For certification and economic purposes, mobile tilting parts should be avoided. The concept introduced in this paper simplifies the aircraft and makes it economical to build, certify and maintain. Four contrarotating propellers with eight electric motors are installed. During cruise, only two of the eight rotors available are not feathered and active. In the first step, a commercial, certified, jet-fueled APU and an available back-up battery are used. A second solution uses a CNG APU and the same back-up battery. Finally, the third solution has a high-density dual battery that is currently not available. A conceptual design is shown in this paper

    Design Issues of Heavy Fuel APUs Derived from Automotive Turbochargers Part III: Combustor Design Improvement

    Get PDF
    Heavy fuel combustion problems with startup and operation may significantly reduce the microturbine efficiency in small APUs (Auxiliary Power Units). The use of commercial automotive-derived turbochargers solves the design problems of compressors and turbines but introduces large issues with combustors. The radial combustor proved to be the best design. Unfortunately, high-pressure injection is not practical for small units. For this reason, primary air and low-pressure fuel spray are heated and mixed. In any case, a high air swirl must achieve a satisfactory combustion efficiency. This swirl should be almost eliminated at the turbine intake. CFD analysis of the combustor design was, therefore, performed with several different geometries and design solutions. In the end, a large offset of the fresh pipe from the compressor proved to be the best solution for a high swirl in the combustion region. The combustion tends to eliminate the swirl, but an undesired tumble motion at the turbine intake takes place. To eliminate the tumble, two small fins were added to straighten the flow to the turbine

    Mobility improvement of heavy tracked vehicles: The "pan" tank experience

    Get PDF
    This paper shows that the sinkage of the tracked vehicle is the most important parameter in its mobility. Power and fuel consumption follow cubic power law with sinkage. So the usual strategy to increase power is not the more convenient way to improve vehicle off road performance. The Ground Pressure (GP) is the critical parameter. Power requirement goes with the cubic power of sinkage. GP above 0.9 daN/cm2 should be avoided at all costs. The best way to obtain this result on an existing design is to increase track length. However it is easier to work on track width. The easiest modification is to add "Duckbill extensions" in the outer part of the shoe. This system was used on the Sherman Tank when additional armor was added. With modern technology it is perfectly possible to perform experimental tests with new shoes. This can be done by manufacturing prototypes of high stress nitrided steel shoes, usually with 300M high strength steel. Comparative fuel consumption is a good index of vehicle performance. Also wheel diameter and width can be increased to improve off-road performance. Specialized tracks for different terrains should also be designed. The gravity center should be kept slightly rearward. This attitude should not be excessive to keep the pressure value more even possible along the track. In any case the vehicle naturally assumes the backward inclination due to terrain compression. Another important improvement is the addition of computer controlled directional control to improve the accuracy of trajectories. This is particularly important for tracked vehicles where turning involves extremely high energy consumption

    Detailed analysis of shake structures in the KLL Auger spectrum of H2S

    Get PDF
    Shake processes of different origin are identified in the KLL Auger spectrum of H2S with unprecedented detail. The KLL Auger spectrum is presented together with the S 1s−1 photoelectron spectrum including the S 1s−1V−1nλ and S 1s−12p−1nλ shake-up satellites with V−1 and nλ indicating a hole in the valence shell and an unoccupied molecular orbital, respectively. By using different photon energies between 2476 and 4150 eV to record the KLL Auger spectra two different shake-up processes responsible for the satellite lines are identified. The first process is a shake-up during the Auger decay of the S 1s−1 core hole and can be described by S 1s−1→2p−2V−1nλ. The second process is the Auger decay of the shake-up satellite in the ionization process leading to S 1s−1V−1nλ→2p−2V−1nλ transitions. By combining the results of photoelectron and Auger spectra the involved V−1nλ levels are assigned

    Simulation of Auger decay dynamics in the hard X-ray regime: HCl as a showcase

    Get PDF
    Auger decay after photoexcitation or photoemission of an electron from a deep inner shell in the hard X-ray regime can be rather complex, implying a multitude of phenomena such as multiple-step cascades, post-collision interaction (PCI), and electronic state-lifetime interference. Furthermore, in a molecule nuclear motion can also be triggered. Here we discuss a comprehensive theoretical method which allows us to analyze in great detail Auger spectra measured around an inner-shell ionization threshold. HCl photoexcited or photoionized around the deep Cl 1s threshold is chosen as a showcase. Our method allows calculating Auger cross sections considering the nature of the ground, intermediate and final states (bound or dissociative), and the evolution of the relaxation process, including both electron and nuclear dynamics. In particular, we show that we can understand and reproduce a so-called experimental 2D-map, consisting of a series of resonant Auger spectra measured at different photon energies, therefore obtaining a detailed picture of all above-mentioned dynamical phenomena at once

    Ultrafast nuclear dynamics in the doubly-core-ionized water molecule observed via Auger spectroscopy

    Get PDF
    We present a combined experimental and theoretical study of the Auger-emission spectrum following double core ionization and excitation of gas-phase water molecules with hard-x-ray synchrotron radiation above the O K−2 threshold. We observe an indication of ultrafast proton motion occurring within the 1.5 fs lifetime of the double-core-hole (DCH) states in water. Furthermore, we have identified symmetric and antisymmetric dissociation modes characteristic for particular DCH states. Our results serve as a fundamental reference for state-of-the-art studies of DCH dynamic processes in liquid water both at synchrotron and free-electron-laser facilities
    • 

    corecore